Mass as a means to count

How do you count very small particles in large amounts?

What does an equation represent?

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Draw a representation of particles:

4 Al atoms $+3 \mathrm{O}_{2}$ molecules yield 2 molecules of $\mathrm{Al}_{2} \mathrm{O}_{3}$
4 Al moles $+3 \mathrm{O}_{2}$ moles yield 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$

coefficients do not mean mass

$$
4 \mathrm{gAl}+3 \mathrm{gO}_{2} \text { yield } 2 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}
$$

Al $2 \times 27=54$
Use moles to determine mass $\underset{4 \mathrm{~mol} \mathrm{Al} @ 27 \mathrm{~g} / \mathrm{mol}}{4 \mathrm{Al}(\mathrm{m})}+\underset{3 \mathrm{~mol} \mathrm{O}_{2} @ 32 \mathrm{~g} / \mathrm{mol}}{3 \mathrm{O}_{2}(g)} \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \underbrace{}_{2 \mathrm{~mol}^{2} \mathrm{Al}_{3} @ 102 \mathrm{~g} / \mathrm{mol}}$
$108 \mathrm{~g}+\quad 96 \mathrm{~g} \quad=\quad 204 \mathrm{~g}$
$3 \times 16=\frac{48}{?}$
$\left.2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\right\}_{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3} @ 102 \mathrm{~g} / \mathrm{mol}}$

Law of Conservation of Mass
Mass is never created or destroyed

Stoichiometric Conversions

Gram to Gram Problem

If I have 75 grams of H_{2}, how many grams of O_{2} will react with it?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Mass to Mass Stoich problems

How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose?
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

How many grams of oxygen will be produced with same starting amount?

Mass to Mass Stoich problems
How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose?

How many grams of ammonia are formed if I start with 50.0 g of nitrogen
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

How many grams of ammonia are formed if I start with 50.0 g of H_{2}

STOICHIOMETRY:

Name \qquad MASS-MASS PROBLEMS

Limiting Reactant and excess
How many grams of ammonia are formed if I start with 50.0 g of nitrogen and 50 grams of H_{2}.
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

$$
\begin{aligned}
& \text { p. } 110 \\
& { }_{2} \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
& 12.5 \mathrm{~g} 38.9 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& =18.72 \mathrm{CO}_{2} \\
& \begin{array}{|l||l|l|l|l|}
\hline \mathrm{LR} \cdot 38.9 \mathrm{~g} \mathrm{O}_{2} & 1 \mathrm{mbl} \mathrm{O}_{2} & 4 \mathrm{molCO} & 22.4 \mathrm{LCO}_{2} \\
& 32 \mathrm{~g} \mathrm{O} & 7 \mathrm{molO} & 1 \mathrm{molCO}_{2}
\end{array} \\
& =15.6 \mathrm{CO}
\end{aligned}
$$

$$
\begin{aligned}
& 12.5 \mathrm{~g} \\
& \frac{10.4}{2.1 \mathrm{~g} \mathrm{exces} C_{2} \mathrm{H}_{6}}
\end{aligned}
$$

What is the limiting reactant, exess reactant and amount of product that can be made?

$2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SbCl}_{3}$

How many grams of chlorine gas are required to react with 8 grams of antimony?

How many grams of SbCl_{3} are produced from 109 grams of Cl_{2} and excess Sb?

How many grams of KClO_{3} must decompose in order to produce 25 grams of oxygen gas?

$$
2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

